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The effect of pair interactions between charged macromolecules on the bulk stress 
is calculated for the Newtonian low-shear limit. Electrostatic force laws are derived 
for molecular conformations corresponding to  the limits of weak and strong intra- 
molecular repulsions and used t o  determine the equilibrium pair distribution function 
and the perturbation due to  the flow. Intramolecular and near-field intermolecular 
hydrodynamic interactions are neglected as appropriate for so-called free draining 
macromolecules. The resulting bulk stress contains separate contributions from the 
far-field hydrodynamic interactions and the electrostatic forces. The coefficient of 
the O(c2) term in the viscosity which equals 0.4 in the purely hydrodynamic limit is 
predicted t o  increase dramatically with decreasing ionic strength for charged macro- 
molecules in agreement with experimental data in the literature. 

1. Introduction 
Polymer solutions are non-ideal in both their thermodynamic and their mechanical 

properties. Typical of the thermodynamical effects are large second virial coefficients 
which vary with the solution chemistry (e.g. Yamakawa 1971). On the mechanical 
side shear-rate dependent viscosities and elastic effects such as normal stress differences 
in shear flows and large extensional viscosities are common (e.g. Bird el al. 1977; 
Schowalter 1978) .  These phenomena arise from the influence of intermolecular forces 
and viscous stresses on the microstructure of the macromolecular solution. Unlike 
normal solutions with molecular dimensions smaller than 100 A in which only strong, 
short-range forces can compete with the intense thermal motion in determining the 
liquid structure, the larger macromolecular dimensions ( 102-104 A) permit viscous 
forces and intermolecular interactions with length scales on the order of a micron 
to influence both the conformation and spatial distribution of polymer molecules. 
Since this ‘ macromolecular structure’ controls the bulk thermodynamic and mech- 
anical properties the appearance of non-idealities is easy to understand qualitatively 
but difficult to quantify except in the dilute limit. 

Here the shear viscosity normalized with the solvent viscosity p0 can be expanded 
in powers of the weight concentration c as 

p/po  = 1 + [ q ] c + k [ q ] 2 c 2 + . . .  . 
The coefficient [q] generally known as the intrinsic viscosity reflects the spatial extent 
of an isolated macromolecule and the Huggins’ coefficient k the effect of pair inter- 
actions. For uncharged polymers k - 0.3-1.0, making the c2 term insignificant until 
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[q] c N O( 1)  and uninteresting even then since k changes little with molecular weight 
or shear rate. In  concentrated solutions changes in molecular conformation also seem 
to negate other interaction effects in the absence of physical entanglements. For this 
reason the dynamics of individual macromolecules have been probed extensively for 
insight into the rheology of moderately concentrated polymor solutions (e.g. Williams 
1975; Bird et al. 1977). 

Solutions of charged polymers, commonly known as polyelectrolytes, are signifi- 
cantly more non-ideal because of their sensitivity to the ionic strength of the free 
electrolyte and the dissociation of the fixed charges. Intramolecular electrostatic 
interactions tend to expand the macromolecule and therefore increase [q] while 
intermolecular interactions affect k. For a highly charged macromdecule both [7] and 
k can increase by an order of magnitude from high to low ionic strengths (Moan & 
Wolff 1974; Pals & Hermans 1952). As a result interactions influence the viscosity 
at  lower concentrations 

and both [q] and k become more shear-rate dependent. More concentrated solutions 
of technical importance in tertiary oil recovery processes, for example, display this 
same sensitivity to electrochemical environment and shear rate (Mungan 1972). A 
study of dilute solutions intended to elucidate the complex relationship between bulk 
rheology and molecular parameters at  these higher concentrations therefore must 
include pair interactions a t  least. 

The O(c)  electrostatic influence, i.e. the enhancement in [q] ,  can be estimated from 
existing theories for the dynamics of isolated polymer molecules and the expansion 
engendered by intramolecular forces of non-electrostatic origin (Yamakawa 197 1).  
More accurate predictions may soon be available from a new approach proposed by 
Edwards (1965) and devoloped further by de Gennes (1969) and others. Limited 
theoretical results and the scarcity of data on well-characterized solutions currently 
makes evaluation difficult, however. 

Here we concentrate on the pair interaction problem, one which has surfaced 
occasionally in the polymer literature but until recently had not been solved even 
for uncharged macromolecules. Analyses have focused on the limiting cases of negli- 
gible and dominant intramolecular hydrodynamic interactions, generally termed free- 
draining and non-draining, respectively. The problem lies in the slow decay of the 
intermolecular hydrodynamic interactions which renders straightforward calculations 
non-unique. Saito (1  950) first correctly circumvented the mathematical difficulty 
through physical reasoning to obtain k = 0.40 in the absence of near-field hydro- 
dynamic interactions. Recently Felderhof (1  976) rigorously substantiated this result. 
Although neither author stated so explicitly this represents the correct limit for free- 
draining macromolecules under thermodynamically ideal conditions, i.e. no net inter- 
molecular forces. Peterson & Fixman (1963) handled the non-convergent integrals 
correctly in the non-draining limit to find k = 0.69 for non-penetrating spheres and 
k = 0.88 for interpenetrating spheres but employed only approximate hydrodynamics 
and failed to appreciate the stresses generated directly by Brownian forces. By taking 
the dilute limit of their mean-field theory for concentrated polymer solutions Freed 
& Edwards (1975) obtained k = 0-75 in the non-draining limit for a Gaussian chain 
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molecule without intermolecular forces; however, near-field hydrodynamic inter- 
actions and Brownian forces again appear to have been omitted. Only recently 
Batchelor (Batchelor & Green 1972; Batchelor 1977) rigorously accounted for the 
non-convergent integrals, the hydrodynamic interactions and the Brownian forces to 
obtain k = 0-99 for non-draining and non-penetrating spheres. 

This paper applies Batchelor’s approach to pair interactions between free-draining 
macromolecules subject to Brownian motion and intermolecular electrostatic forces. 
The thermodynamically ideal state assumed in the absence of electrostatic forces 
permits complete interpenetration of the macromolecules and produces k = 0.40 in 
accord with Saito and Felderhof. Only in the limit of strong repulsions do we obtain 
the hard sphere excluded volume considered by Batchelor and Fixman (1965), but 
the corresponding Huggins’ coefficient substantially exceeds their values because 
of the electrostatic contribution to the stress. 

A similar concern with the role of intermolecular forces in concentrated polymer 
solutions led Williams (1966, 1967) to develop an approximate theory for pair inter- 
actions. He used existing formulations for the bulk stress (Fixman 1965), the inter- 
molecular potential (Flory 1945), and the pair distribution function (Kirkwood, 
Buff & Green 1949) which resemble ours, but evaluated them through approximations 
which are invalid in the dilute limit. Non-Newtonian effects were predicted as a 
consequence of molecular deformation due to  shear altering the intermolecular forces. 

This paper opens with a discussion of an isolated free-draining macromolecule to 
explain the uncertainty in the intramolecular segment density and motivate the 
choice of Gaussian and uniform distributions for the pair interaction analysis. The 
necessary hydrodynamic results for both are obtained quite simply and then used to 
derive the bulk stresses complete with contributions from viscous, Brownian, and 
other intermolecular forces. I n  a manner reminiscent of the Flory (1945) and Flory & 
Krigbaum (1  950) theories for solution thermodynamics electrostatic force laws are 
developed and incorporated into a pair conservation equation of standard form. 
From that point we restrict the analysis to the low-shear or strong Brownian motion 
limit permitting an expansion of the pair density as the equilibrium result plus a 
small perturbation due to flow, Solutions for the latter in several limiting cases 
produce bulk stresses and Huggins’ coefficients which demonstrate the dramatic 
effect of electrostatic forces and are conveniently insensitive to the form chosen for 
the segment distribution. Finally, comparison of the predictions with the data of 
Pals & Hermans (1952) shows reasonable agreement. The existing discrepancies 
appear to arise from non-Newtonian effects a t  the finite experimental shear rates. 

2. Conformation of charged macromolecules 
A model for the internal structure and the dynamics of individual macromolecules 

is essential to the analysis of pair interactions. For uncharged polymers many sophis- 
ticated theories based on statistical descriptions of the polymer chain have followed 
the random flight model originally presented by Kuhn and by Guth & Mark in the 
1930s. Calculations including detailed segment-segment interactions have predicted 
with some success thermodynamic properties such as osmotic pressure as well as 
transport properties including the intrinsic viscosity and the friction coefficient 
(Yamakawa 1971). Most of the dynamical theories (Kirkwood & Riseman 1948; 
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Rouse 1953; Zimm 1956) pertain to thermodynamically ideal polymers with no 
excluded volume for which the equilibrium conformation is a Gaussian coil. 

With polyelectrolytes non-idealities arise primarily from the interaction of fixed 
charges along the polymer backbone as mediated by low molecular weight salts in 
solution. High ionic strengths effectively shield the fixed charges allowing the macro- 
molecule to relax to a random, or Gaussian, coil, but the removal of electrolyte in- 
creases the repulsion between segments causing a flexible macromolecule to  expand. 
Attempts to predict the expansion factor began with Hermans & Overbeek (1948), 
who assumed the Gaussian form to be preserved but determined the radius of gyration 
by minimizing the sum of the electrostatic and the entropic free energies calculated 
from a smoothed segment density. Recently Edwards (1965) and de Gennes (1969) 
have developed ' self-consistent ' approaches along the same lines which would deter- 
mine the segment distribution as part of the solution. To date only asymptotic results 
for small and large expansions are available (Richmond 1973; de Gennes, Hncus & 
Velasco 1976; Bailey 1977). 
. 

I n  the absence of a general theory for polyelectrolyte conformation, we have chosen 
two forms for the segment distribution felt to characterize the limiting cases of 
strong and weak electrostatic effects and will treat the radius of gyration rg as an 
independent parameter. The ideal limit a t  high ionic strengths or low charge densities 
will be represented by the Gaussian segment density 

where r i  = rZp(r) d3r s 
is the mean squared radius of gyration. The other limit of dominant, electrostatic re- 
pulsions at  low ionic strengths or high charge densities should produce a more uniform 
spacing between segments approximated by 

with r: = taz. I n  the following sections the hydrodynamics and electrostatics of these 
models will be reviewed. 

3. The hydrodynamics of free-draining macromolecules 
I n  this analysis of intermolecular interactions we neglect intramolecular hydro- 

dynamic interactions and molecular deformation, which should be reasonable for 
somewhat expanded polyelectrolytes in weak flows. 

Under these conditions an individual bead, or friction centre, a t  position xi relative 
to the centre of mass has velocity 

determined by the translation U, and rotation w, of the rigid macromolecule, and 
experiences the undisturbed velocity of the fluid u,(xi). The difference between these 
two velocities produces a viscous force on the bead 

u, + w, x xi, 
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where fo is the friction coefficient of the bead. The opposing force exerted by the bead 
on the fluid generates a disturbance velocity field which affects the bulk properties 
of the solution. 

For a macromolecule moving through a quiescent fluid with U, = coo = 0 the total 
force follows as the sum of Fi over all beads or equivalently 

F = - f o U o N / p ( r ) d 3 r  

= -foNUo (5) 

since the segment density p ( r )  is normalized. Thus without hydrodynamic interactions 
the molecular friction coefficient is simply the sum of the bead coefficients. 

One can derive the viscosity of a dilute solution in a similar fashion by noting that 
each segment contributes to  the bulk stress as 

where Q is the stress field in the Auid generated by the point force Pi. For a homo- 
geneous shear flow 

where E is the symmetric rate of strain tensor far from the macromolecule 

u,(x~) = E . x i + o 0  x x i ,  Uo = 0 (7) 

Z p  = nN J” Z ( r ) p ( r )  d3r 
= Qnfo Nri E + O(n2) 

with n the number density of macromolecules. The conventional form in terms of 
the mass concentration c = M,n/N, 

Z P  = 2po[7]cE 
determines the intrinsic viscositv 

where NA is Avogadro’s number and M, the molecular weight. Thus for free-draining 
macromolecules the conformation only enters through the dependence of r i  on mole- 
cular parameters; for example substitution of r: = +N12 for a Gaussian coil with 
statistical segments of length 1 transforms (10) into Rouse’s (1953) result while 
rf = for a uniform segment density reproduces the porous sphere result of Debye 
& Bueche (1948) and Brinkman (1947). 

The neglect of hydrodynamic interactions within the macromolecule in the 
free-draining limit necessitates the neglect of near-field interactions between macro- 
molecules. Two molecules with vector separation r subject to  equal but opposite 
forces F and - F and imbedded in the flow field (7) therefore have relative velocity 

n 
;5 

U = - F + E . r + o , x r .  
Nfo  

Exceptions to this statement arise only in the calculation of concentration-dependent 
bulk properties from local pair interactions as shown by Felderhof (1976). 
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4. Bulk stress in dilute suspensions with Brownian motion 
Each of the forces active at the microscopic level in a colloidal suspension or a 

polymer solution, e.g. viscous, Brownian, and electrostatic, may contribute to the 
bulk stress. Batchelor has derived the general form of the viscous and Brownian 
contributions for interacting spheres (Batchelor 1970; Batchelor & Green 1972; 
Batchelor 1977). An extension of the same approach to include electrostatic forces 
between the spheres (Russel 1976) produced a dipole form for the bulk stress in the 
absence of hydrodynamic interactions in agreement with that for non-interacting 
dumbbells (Bird et al. 1977). In the following these results are applied to interactions 
between free-draining macromolecules. 

The bulk stress in an electrolyte solution is the volume average of the viscous and 
Maxwell stresses plus the momentum flux tensor, i.e. 

(o+m-puu)dV = 

where m = E(V$V$ - +$V$. V$). Because of the low Reynolds number of the steady 
state motion the momentum flux only contributes the initial isotropic term arising 
from the kinetic energy of the individual macromolecules (Bird et al. 1977). 
A more meaningful form for the bulk stress is obtained by isolating the contribution 

from the pure solvent and following Batchelor’s (1970) manipulations to obtain 

Z = -po6 + 2 , ~ ~  E + CP, (13) 

where the particle stress in the absence of near-field hydrodynamic interactions is 

i m  

Z p  = -nkT6+ Zcy, -2- x,F,. 
V n = l  

Here the contribution of the intermolecular forces F, has been isolated in the final 
term leaving Zcyd as the viscous stress generated by the imposed shear field. 

Batchelor & Green (1972) and Felderhof (1976) have demonstrated that the hydro- 
dynamic particle stress in the absence of near-field interactions is 

Xcyd = 5n~tk~O E( 1 + an). (15) 

For free-draining macromolecules 

so that 
a = Q [rl J4uIx4 

(17) 
1 N  

V n = l  
Z P  = -nkT6+2~oE[~]~(l+j[r]~)-- x,F,. 

In the absence of intermolecular forces (17) predicts a Huggins’ coefficient of 0.40 
for free-draining macromolecules independent of the segment distribution, molecular 
weight, and radius of gyration as found by Saito (1950) and Felderhof (1976). 

For pair interactions the last term can be written in terms of the probability 
density P(r )  for a second particle a t  position r with respect to the test particle 

Zgter = - in1 rFP(r) d3r. (18) 

The factor of 4 appears because N particles in volume V produce only &iV pairs. 
Fixman (1965) derived (18) but neglected the O(c2) hydrodynamic interaction. 



Viscosity of a solution of charged macromolecules 407 

Results for two related problems support these arguments. Bird and co-workers 
have developed the kinetic theory of elastic dumbbells as a model for macromolecules 
in solution (e.g. Bird et al. 1977). The two beads are generally taken as friction points, 
i.e. no volume, so that a = 0 but forces are transmitted between the beads by the 
connector. Then with F,, = F;Pring and P(r )  = 6(r - ro), the above result agrees with 
the stress derived from kinetic theory, 

(19) 

where ro is the vector separation of the beads, i n  is the number of dumbbells and 
( ) denotes the configurational average. Similarly the osmotic pressure in a dilute 
polymer solution, derived from the chemical potential using MacMillan-Mayer theory 
(Yamakawa 1971) 

corresponds to the pressure predicted by (17). 
Experiments with uncharged polymers in ideal or theta solvents, ,i.e. without 

thermodynamic interactions, generally find 0.4 < k 6 1.0, possibly inaicating weak 
hydrodynamic interactions (Berry 1967). As will be shown in the following sections, 
polyelectrolyte solutions often have much larger Huggins' coefficients reflecting 
strong intermolecular electrostatic forces. 

X = - nkT'S - ?p(r,FSp), 

rr = nkT + Qna<r. F), (20) 

5. Electrostatic force laws 
Analyses of equilibrium double layers, i.e. the distribution of free ions around 

a fixed charge in the absence of fluid motion, generally begin with the Poisson- 
Boltzmann equation for the potential @ 

Here e is the electronic charge, E the dielectric constant, zi the ionic valence, n? the 
ion concentration in the bulk fluid, and kT the Boltzmann temperature. The right- 
hand side comprises the net charge density in the fluid, obtained by summing ezi 
times the ion concentrations. The Boltzmann distribution of the latter shown in (21) 
is a result of integrating the individual conservation equations. The assumptions 
implicit in (21) have been critically examined by Kirkwood (1934) and Bell & Levine 
(1966). The most notable are the treatment of free ions as point charges, the smoothing 
of the space charge into a uniform distribution, and the assumption of a constant 
dielectric constant for the fluid. Difficulties do arise, particularly a t  high ionic strengths, 
but tractable alternatives have yet to appear. 

In this section electrostatic force laws for interacting charged macromolecules are 
derived on the basis of three addj tional assumptions. 

(i) The physically excluded volume occupied by the polymer backbone can be 
neglected. 

(ii) A smoothed density for the fixed charges can be substituted into the Poisson- 
Boltzmann equation in place of discrete locations along the backbone. 

(iii) The electrostatic potential in the fluid is sufficiently small for the Poisson- 
Boltzmann equation to be linearized. 

While not original with this work these assumptions will be discussed in some detail. 
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For a flexible macromolecule in an ideal, or theta, solvent the radius of gyration 

ri = QN12 (22) 

depends only on the number N and the length 1 of the statistical segments. If each 
segment has radius a 5 1 the volume fraction of polymer within the coil is approxi- 
mately 

Thus the point charge approximation should be valid except when attractive intra- 
molecular forces collapse the coil into a globular form. 

The restriction to small [or at  most O ( l ) ]  dimensionless potentials e$/kT is both 
mathematically necessary and physically reasonable for polyelectrolytes. In the 
vicinity of the polymer backbone where the potential is largest the fixed charges 
resemble a line charge with linear density ,8. If elx]/3/ekT (with IzI the counter-ion 
valence) exceeds unity the intense electric field causes counterions to ‘condense’ on 
the excess fixed charges, effectively neutralizing them (see e.g. Manning 1974). Thus 
the corresponding potential 

cannot exceed one anywhere. 

centred a t  r = 0 is determined by 

Na21/ri - N-t(a/1)2 < 1.  (23) 

e$/kT - e,8/skT (24) 

With these assumptions the potential around a single polyelectrolyte molecule 

v2$ = K2$ - l ) ( r )  
€ 

d$ 
r+o dr 

with $ + O  as r+co and l imr2-=00.  

p ( r )  is the normalized segment density and Q the total charge. Rather than solving 
(25) for arbitrary r g K  we merely note two limiting cases, 

(27) 
Q $ = - (Y) for TgK 9 1.  

€K2 I, 
and 

Only (27) will be needed below because the expansion of flexible polyelectrolytes 
with decreasing ionic strength generally maintains r g K  9 1. 

Interactions between two charged macromolecules can be described by super- 
imposing the individual potentials; because of the point charge approximation the 
equation and boundary conditions are still satisfied. Likewise the potential energy 
of a second macromolecule with segment density p2(r) residing in the potential field 
$l(r) of the first equals the sum of the energy of its fixed charges or 

v(r12) = /QP,W d3r 

for 

Clearly for r g K  B 1 the molecules must overlap to interact. The integral takes a 
more convenient form in the cylindrical co-ordinates of figure 1, 
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FIGURE 1. Cylindrical co-ordinate system for pair interactions. 

' I ra  

FIGURE 2. Electrostatic forces as a function of separation for uniform (-) 
and Gaussian (---) segment densities. 

The results for the intermolecular potential and the corresponding force for the 

(a) Gaussian: 
two segment densities follow. 

dV 3 3 3 Q2 r12 
Fe1(r12) = -- = - (-) T2 - exp (-2). dr12 16 77 e r g K  rB 

( b )  Uniform: 

V ( r I 2 )  = - - 
477 6U3K-2 

9 Q2 
Fel(r1'2) = - - 1677 6 a 4 ~ 2  (' -3) ' 

for r,2 < 2a. 
With r: = fa2 the latter becomes 

81 Q2 

which is compared with (30) in figure 2. The two forces have similar ranges and mag- 
nitudes but markedly different forms; the effect on bulk properties such as viscosity 
and osmotic pressure will be calculated in the following sections. 
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6. Weak-flow limit of the pair conservation equation 
The weak-flow assumption which permitted the neglect of macromolecular defor- 

mation also simplifies the description of pair interactions. Below we formulate the 
conservation equation for the pair density P ( r ) ,  which specifies the probability of 
finding a second molecule at  x + r given a test molecule a t  x, and then expand in a 
regular perturbation about the equilibrium pair density Po(r) to calculate the first- 
order effect offlow. If non-hydrodynamic forces affect the pair distribution, this small 
perturbation contributes to the bulk stress at  the same order as the viscous stress 
corresponding to the equilibrium configuration. 

The conservation equation for the pair density in configuration space r is 

aplat + v .  pu = o. (33) 

with U from (1  1) .  For a thermodynamically ideal solution in the absence of charges, 
only Brownian and electrostatic forces need be considered so 

(34) 

(35) 

F = Feir/r - kTV In P .  

aP/& + I' (E + a). R .  VP + aV . ( P  felR/R) = V2P, 

Then the scaled conservation equation for a homogeneous shear flow is 

where r = -  Q2 

47rer?, K2kT ' N f o  r: (E: E)*, a = 
2kT 

and E and a are the dimensionless rate-of-strain and vorticity tensors, respectively. 
The boundary conditions 

(36) 1 RZaP/aR -+ 0 as R --f 0, 
P + n  as R-+m 

specify a random bulk solution dominated by Brownian motion and thereby exclude 
the possibility of long-range order. 

Weak flows can now be defined by I? < 1 and the regular expansion 

P ( R )  = P,(R)(1+I'g(R)R.E.R/R2) (37) 

used to decompose (35) into an O(1) equation for Po and an O ( r )  for g. At steady state 
the former. 

with 

has solution 

R2dPo/dR -+ 0 as R -+ 0, 

P 0 + n  as R+m, 

Without an electrical force Po(R) = n and the macromolecules freely interpenetrate, 
but f e l  =+ 0 generates an excluded volume which for large a can be approximated from 
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the radius at  which the exponent in (39) becomes O(1); this leads to 

a/3)) (Gaussian) 

(uniform). 
Y 4  x { ;;) 

The latter represents two impenetrable spheres of radius a = ($)* r0. 
The O(r) ordinary differential equation for g(R) is 

41 1 

with dg/dR = 0 at R = 0, 

g + O  8s R + w .  

The forcing term on the right-hand side is the deformation of the equilibrium distri- 
bution by the weak flow. In the following sections solutions to (40) will be presented 
with the corresponding particle stresses for Gaussian and uniform segment densities. 

Gaussian segment density 
For the Gaussian segment density (1) characteristic of an ideal random coil the 
exponential dependence of the electrostatic force law (30) renders the transformed 
pair conservation equation (40) rather tedious to  solve analytically with a power 
series in R so only the asymptotic results for small and large a will be presented. In  
fact the leading terms in these asymptotic expansions provide a surprisingly clear 
indication of the particle stress and, hence, the Huggins coefficient over the entire 
range of a. 

Electrostatic forces which are weak relative to Brownian motion, i.e. a < 1, make 
the equilibrium distribution only slightly non-uniform, 

PJR) = n{ 1 - 1.4701 exp ( - ER2) + O(a2))  (41) 

and result in an O(a) perturbation determined by 

1 d dg 69 
E22dR dR R2 

R2 - - - = 2.20aR2 exp ( - fR2) 

with dg/dR = 0 at R = 0, 

as 
gi.0 as R - t w ,  

exp (PR2) JRexp ( - $R2) dR) . 2 2  
g(R) = 0.98ccexp( - tR2)  1 +--- (43) 

The intermolecular particle stress (18) with (35) and (37) and integration over a 

1 R2 R2 0 

= - &nolf,N~;n’E Joa R3fel(R) Po(R) g(R) dR. 

spherical surface becomes 

(44) 

Completing the integration with (30), (41), and (43) provides 

Zrnter = 0.218 a2f,Nr:n2E. (45) 
As expected the suspension remains Newtonian in the low-shear limit with a small 
colloidal stress since 01 < 1. 
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Conversely, strong electrostatic repulsion depletes the region 1 r I S rg of pair space 
while the uniform distribution persists for Irl B rg.  Because of the exponential decay 
of the electrostatic force law, an abrupt transition between these two limits occurs at  
the separation characterizing the excluded volume above 

R2 N +In a. 

Brownian motion dominates at larger separations, the electrostatic repulsion domi- 
nates closer approach and only in the thin intermediate region around (+ha)* 
must both be considered simultaneously. The leading terms in a matched asymptotic 
expansion of this form are presented below. 

Without diffusion the equation in the inner region, defined by R N O( 1) reduces to 

dg - R+O(a-l) a- 

which satisfies the boundary condition a t  R = 0 (40) despite the singular nature of 
the expansion in this region. 

In  the outer region where R2 9 h a  and the electrostatic force can be neglected, 
the lowest order equation, 

with g + O  as R+m, 
has solution 

In  the intermediate region the change of variables 

R2 = + l n a + p  (50) 

(51) 

(52) 

balances the Brownian and electrostatic terms as 

d2g/dp2 + 1.10 exp ( - $p) dg/dp = 0.55 exp ( - $p) + O(dg/dp/ln a). 

ginter = ~2 + QP. 

The solution capable of matching the inner and outer solutions is 

The correct matching scheme to determine the constants appearing in these three 
solutions is 

lim ginner = lim ginter 
RG In u p-t-00 

As a result 
32 

c1 = -y- lna ,  c2 = -$ha ,  and c3 = -- (54) 

The fact that c1 and c2 are not O( 1 )  as implicitly assumed in (47) and (52) is unimportant 
because the error terms remain O(a-l) and O([lna)-l], respectively. Figure 3 illus- 
trates the smooth form of the matched solution. 
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Outer region 

I I 
0 0.5 1 .o I .5 

Rl(ln@ 

FIGURE 3. Matched asymptotic solution for perturbed pair density g(R)  for 
Gaussian segment density in a @ 1 limit. 

The leading contribution to the intermolecular particle stress (44) comes solely 
from the intermediate region where the integrand is O( l/a (In a)g). The inner region 
contains too few pairs, Po N e-a, while the electrostatic force becomes very weak in 
the outer, f e l  < O(a-1). With the intermediate solution 

JOm R3 fe l (R)  w) g(R)  dR = - 0.753 exp ( -&I) exp ( - 1.47e-QP) dp n 

so that 

= - 0-683 (In ")#/a 

Zgter = 0.286(1na)g foNrin2E. 

As a increases the stress also increases without bound. This differs significantly from 
the following result for a uniform distribution of segments over a fixed volume, an 
effect of the approximate nature of the Gaussian segment density which never becomes 
identically zero but permits some overlap even a t  very large separations. Since the 
true segment density must be zero a t  radii greater than half the extended length, this 

limit becomes suspect for +In a N 

Uniform segment density 

With the electrostatic force law for a uniform segment density the pair conservation 
equation is amenable to power series solution as well as asymptotic expansions for 
small and large a. Indeed the three solutions complement one another to cover the 
full range of a. The analysis differs somewhat from the Gaussian case because the 
electrostatic force is identically zero for R > (20/3)4, defining an exterior region in 
which Po = n and g cc R-3. At R = (20/3)* both the function and the flux, i.e. deriva- 
tive, must be continuous indicating that the interior solution must satisfy 

dg/dR+$(g)*g = 0 .  (57) 
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For a 4 1 the appropriate interior solutions are 

Po = n{ 1 - 1.394 I - $( i)* ( R  - +&]] 
and 

which produces 
g = 0*8la{ -$($)iR2++R3--LR5 160 1 

Zgtcr = 0.232a2foNr:n2E. 

Note that this falls within 10% of the corresponding result for the Gaussian coil. 
For a b 1 the analysis parallels that in the previous section except that the inter- 

mediate region now lies just inside R = (z$)*. Within this boundary layer the rescaled 
length 

reduces (401 to 
h = a*( 1 - -?-R2) 2 0  (61) 

with 
dgldh = $ g / d  

at h = 0 from (57). The interior and exterior equations are similar to the Gaussian 
case. The complete solution 

determines the bulk stress as 
Cg,, = 15.0foNr:n2E. 

This limit is independent of a because the mean separation cannot exceed 2(y)4 rg,  
i.e. no interpenetration, regardless of the electrostatic force. Without the next term 
in the series these two asymptotic limits reflect only crudely the behaviour for 

For this intermediate range a power series solution has been derived in the form 
a M O(1). 

where r = (&)i R < 1.  The recurrence relation 

(n + 2) an - (n + 4) an+3 an+3 = 2 . 0 9 ~ ~  
(n + 8) (n + 3) 

determines the coefficients with 

1 W 

a,= -50 3 I: Zn(n+5) , i3,=u,/u0 I( n=O 
following from the boundary condition (57). 

With (65) and the expanded equilibrium distribution 

(2*09a)k+m rk+Sm w m  

(-:) m!k! Po(?') = nexp ( -  1.39a) 2 
k=O m=O 
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Q = Q 2 / 4 ~ ~ k T r i ~ Z  

FIGURE 4. Theoretical results for k,, including: - , power series, uniform density; ---, 
ct 4 1, uniform and Gaussian densities; ---, a S 1, uniform density; a $ 1 ,  Gaussian 
density. 

the particle stress (44) can be integrated analytically as 

W P  (2.09a)P Zgter = 30.2aexp ( -  1.39a) foNrin2E 2 ( -$)m+l 
p = o  m = o  m!(p - m)!  

W 10 1 a, x -  ( 3 ( p  + 2m+ 6 )  ( p  + 2m+ 8 ) + 2 o  ( p  + 2m+n+ 6 )  ( p  + 2m+n+ 8) 

(69) 

Figure 4 displays the numerical results for a < 15 where the summations become 
prohibitively time-consuming. The a < 1 limit coincides with the asymptotic solution 
and the power series result appears to approach the a 9 1 asymptote. 

7. Discussion 
In  the preceding sections the electrostatic and viscous contributions to the particle 

stress in the low-shear limit have been derived for Gaussian and uniform segment 
densities. When added to the solvent contribution these determine the total stress as 

C = - ( (Po)+nkT)8+ 2,uOE(1 + [ r ] ~ + [ r ] ~ c ~ ( 3 + k ~ l ) ) .  

The results for the normalized electrostatic component k,l 67r,u0r,/Nf0 summarized 
in table 1 and figure 4 demonstrate the insensitivity of the Huggins’ coefficient to  
molecular structure. The uncertainty as to the exact configuration therefore becomes 
unimportant. 

These theoretical predictions have been compared with the data of Pals & Hermans 
(1952) on dilute solutions of pectin and carboxymethyl cellulose. All relevant para- 
meters were measured independently, i.e. number-averaged molecular weight, radius 
of gyration, charge, ionic strength, and Huggins’ coeEcient. The solutions were 
fractionated but the remaining polydispersity could introduce some uncertainty into 
a cc r i 3  since the radii of gyration were calculated from the measured intrinsic vis- 
cosities with the free-draining coil result (10). Table 2 illustrates the range of the 
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Distribution . . . 
P - 7  

a 4 1  a s 1  
Gaussian 0 . 2 0 8 ~ ~  0.273 (h a)B 
Uniform 0.222aa 14.3 

TABLE 1. Asymptotic results for electrostatic contribution to Huggins' coefficient. 

Pectin 4.6 274 3.81 370 60 0.29 68 

Na-CMC 72 6.4 325 3,74 400 141 0.33 345 

Na-CMC 74 8-6 391 4.39 440 284 0-35 1280 

Na-CMC 73 15.0 725 7.35 600 405 0.48 1900 

TABLE 2. Relevant experimental parameters from Pals & Hermans (1952). 

a = Q214rekTr,3~2 

FIGURE 5. Comparison with data of Pals & Hermans (1952). Theoretical curves: - , power 
series, uniform density; ---, a -g 1, Gaussian density: ....-, 01 & 1, Gaussian density. Data: 
0,  pectin 4.6 x lo4 M , ;  0, CMC 6.4 x lo4 M,; *, CMC 8.6 x lo4 M,; A, CMC 15.0 x lo4 M w .  
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relevant experimental parameters. The superscripts 03 indicate limiting values 
at high ionic strengths. In  all cases the double layers were thin r,K < 1 and the 
macromolecules were free-draining, Nfo/6n,u0 r; < 1 ; so the experimental conditions 
conform to the theoretical assumptions. 

The superposition of experimental points and theoretical curves in figure 5 reveals 
good qualitative, but mixed quantitative, agreement. For a < 1, k z Q as expected 
from the hydrodynamic interactions while for 01 2 1 the Huggins’ coefficient certainly 
increases significantly attaining a maximum value of 21.6 for pectin a t  the lowest 
ionic strength. The pectin data falls within the band of theoretical curves but that 
for carboxymethyl cellulose lies well below. Considering the simplicity of the theory 
which omits several phenomena (to be discussed below), we feel the agreement to 
be encouraging. 

Intermolecular forces of other than electrostatic origin, such as dispersion forces 
and hydrogen bonding, generate thermodynamic and mechanical non-idealities in 
many polymer solutions (Yamakawa 1971). The Flory (1945) and Flory-Krigbaum 
(1950) theories for solution thermodynamics lump thesc into an empirical segment- 
segment interaction parameter + - x which is zero under ideal conditions. The force 
laws obtained by integrating over smoothed Gaussian and uniform segment distri- 
butions have the same separation dependence as (30) and (31), but with a multipli- 
cative constant proportional to 3 - x, The theory for the Huggins’ coefficient in this 
paper therefore can be generalized by defining 

to include all relevant forces (V, = volume of polymer segment, V, I volume of 
solvent molecule) and allowing negative values when attractive forces dominate. 
Although we have no solutions for a < 0 the fact that Pals & Hermans’ data for Ic 
asymptote to 0.4 as a -+ 0 (without attractive forces) seems to discount them as the 
source of the error. 

Deformation of the macrornolccules from their characteristic equilibrium confor- 
mation in dilute solution has also been neglected. Certainly the viscous stresses should 
be insignificant’ in the low-shear limit, but intermolecular electrostatic forces could 
upset the intramolecular balance to alter the conformation. Indeed Yamakawa (1961) 
demonstrated that in non-electrolyte solutions repulsive pair interactions reduce the 
average radius of gymtion under equilibrium (i.e. no flow) conditions. While this 
might reduce the Huggins’ coefficient in our case, iso-ionic dilution is normally 
assumed to maintain a concentration-independent conformation for polyelectrolytes 
(Pals & Hermans 1952). 

The most likely explanation for the low experimental values of k for carboxy- 
methyl cellulose is the shear-rate dependence mentioned briefly by Pals & Hermans 
(1952). As with suspensions of charged spheres (Russel 1978) the electrostatic con- 
tribution to  the Huggins’ coefficient for free-draining macromolecules should be 
shear-thinning. The effect on this set of data can be gauged by the dimensionless shear 
rate 

Although the shear rate y was constant a t  1190 s-l for all runs, I? varied with the 
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r I 

F~GURE 6. Correlation of ratio of the experimental k - 0.40 to  the theoretical k,, with the 
dimensionless shear rate: 0 ,  pectin 4.6 x lo4 M,; 0, CMC 6.4 x lo4 M,; *, CMC 8.6 x lo4 M,; 
A, CMC 15.0 x 1 0 4  M,. 

molecular weights and ionic strengths of the solutions. In  figure 6 the ratio of the 
measured electrostatic effect to that predicted, i.e. ( k -  0 .40 ) /ke l ,  is plotted us. r for 
those runs with (k -0~40)Nfo /6n ,uor ,  > 0.2. The overall trend appears to correctly 
explain the difference between theory and experiment in figure 5 as shear-thinning. 
The apparently rapid decrease in viscosity at r < 0.1 rather than I' N O(1) and the 
lack of supporting trends within the data for each individual polymer remain some- 
what troublesome, but the fact that the pectin data which agrees quite well with 
the predictions falls a t  the lowest dimensionless shear rate supports the validity of 
the theory. 

In  this paper we have drawn two conclusions about the Huggins' coefficient for 
free-draining macromolecules in weak flows: 

(i) in ideal or theta solvents k = Q as found by Saito (1950) and Felderhof (1976); 
(ii) electrostatic repulsions can increase k dramatically above this value. 
In  both cases the theory predicts an insensitivity to the detailed molecular structure 

with dependence on only the hydrodynamic parameter Nfo/6n,uor, and the dimen- 
sionless electrostatic force a! = & 2 / 4 n e r , k T ( r g ~ ) 2 .  The quantitative predictions agree 
fairly well with one set of data, but further data on monodisperso polyelectrolytes 
would be helpful as would attention to several aspects of the theory: the effect of 
polydispersity, formulation for general intermolecular forces, molecular deformation 
caused by interaction, and non-Newtonian phenomena in stronger flows. 

This work was supported by the National Science Foundation through Grant No. 
ENG76-04294. 
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